ЛИТЕРАТУРАВЕЛИКИЕ МАТЕМАТИКИТАБЛИЦЫИГРЫРАЗНОЕКОНТАКТЫКАРТА САЙТА
Разделы
20-е число Ферма 22n + 1 было проверено на суперкомпьютере «Крэй-2» в 1986 г. с целью ответа на вопрос, является ли оно простым. После 10 дней вычислений был получен ответ – нет.

Поиск по сайту
Перевод на другие языки
Последние новости
Добавлен материал "Показательные уравнения и неравенства", в котором заполнены разделы "Теория" и "Методы решений". В ближайшее время ожидайте задачи по этому материалу.
18.03.2013

Прочесть все новости
LiveJournal Vkontakte Facebook Twitter
В избранное Рассылка

Школьный курс комбинаторики обычно имеет дело с задачами выбора и расположения элементов некоторого, обычно конечного, множества, согласно неких правил.

Для формулирования и решения задач по комбинаторике используют следующие конфигурации: перестановки, размещения, сочетания.

Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от 1 до n, где n - число элементов множества.

Перестановка.

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Перестановкой из n элементов называется такой набор элементов множества, которые отличаются от исходного лишь порядком элементов. Обычно перестановка обозначается как Pn и рассчитывается по формуле:

Pn = n!


Пример:

Найти число перестановок множества, состоящего из трех элементов: A, B, C.

Согласно формуле, количество перестановок будет равно 3! = 6.

Действительно, это наборы (ABC),(ACB),(BAC),(BCA),(CAB),(CBA).


Размещение.

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Размещением из n элементов по k будет называться упорядоченное подмножество из k не повторяющихся элементов выбранные из множества, состоящего из n элементов. Обычно перестановка обозначается как Ank и рассчитывается по формуле:

Ank = n!

(n - k)!


Пример:

Найти число размещений множества, состоящего из четырех элементов: A, B, C, D по два, т.е. сколько различных размещений по два элемента можно составить из указанного множества.

Согласно формуле, количество размещений будет равно 4!/(4-2)! = 24/2 = 12.

Действительно, это наборы (AB),(BA),(AC),(CA),(AD),(DA),(BC),(CB),(BD),(DB),(CD),(DC).


Сочетание.

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Сочетанием из n элементов по k будет называться подмножество из k не повторяющихся элементов выбранные из множества, состоящего из n элементов. Подмножества, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Обычно сочетание обозначается как Сnk и рассчитывается по формуле:

Сnk = n!

k!(n - k)!


Пример:

Найти число сочетаний множества, состоящего из четырех элементов: A, B, C, D по два.

Согласно формуле, количество сочетаний будет равно 4!/2!(4-2)! = 24/4 = 6.

Действительно, это наборы (AB),(AC),(AD),(BC),(BD),(CD).


Свойства сочетаний:

1. Сn0 = 1.

2. Сnk = Сnn - k.

3. Сnk = Сn - 1k - 1 + Сn - 1k

4. Сn0 + Сn1 + Сn2 + ... + Сnn - 1 + Сnn = 2n.

Сочетание играет важную роль в математике. В частности, он используется в биноме Ньютона.

Бином Ньютона.

Бином Ньютона - это отношение, позволяющая представить выражение (a + b)n (nZ+) в виде многочлена, а именно:

(a + b)n = an + Сn1an - 1b + Сn2an - 2b2 + ... + Сnkan - kbk + ... + Сnn - 1abn - 1 + bn.

Числа Сn1, Сn2, ... , Сnn - 1 называются биномиальными коэффициентами.

С помощью следующей таблицы можно определить значения биномиальных коэффициентов для любой степени. Строится он следующим образом - любое число образуется суммой рядом стоящих чисел над ним. Именно потому эта таблица имеет название треугольник Паскаля.


0
1
1
1  1
2
1  2  1
3
1  3  3  1
4
1  4   6   4  1
5
1  5  10  10  5  1
6
1  6  15  20  15  6  1
7
1  7  21  35  35  21  7  1
8
1  8  28  56  70  56  28  8  1

Слева указана степень n, справа значения соответствующих биномиальных коэффициентов.


Пример:

Представить в виде многочлена (a + 1)4.

Согласно таблице, в случае четвертой степени коэффициенты результирующего многочлена будут равны 1, 4, 6, 4, 1.

И, действительно (a + 1)4 = a4 + 4a3 + 6a2 + 4a + 1.



2009-2012 © Все права защищены. "Математика - это просто!" - некоммерческий, обучающий сайт. Все права принадлежат их владельцам.
Rambler's Top100 Украинский портАл