ЛИТЕРАТУРАВЕЛИКИЕ МАТЕМАТИКИТАБЛИЦЫИГРЫРАЗНОЕКОНТАКТЫКАРТА САЙТА
Разделы
В книге, опубликованной в 1940 г., содержится 370 различных способов доказательства теоремы Пифагора, включая одно, предложенное президентом США Гарфилдом.

Поиск по сайту
Перевод на другие языки
Последние новости
Добавлен материал "Показательные уравнения и неравенства", в котором заполнены разделы "Теория" и "Методы решений". В ближайшее время ожидайте задачи по этому материалу.
18.03.2013

Прочесть все новости
LiveJournal Vkontakte Facebook Twitter
В избранное Рассылка

1...2 3 

Сумма первых трех членов возрастающей арифметической прогрессии равна 21. Если от первых двух членов этой прогрессии отнять по 1, а к третьему члену прибавить 2, то полученные три члена составят геометрическую прогрессию. Найти сумму восьми первых членов геометрической прогрессии.

____________________________________________________________________________

Обозначим через ai - члены арифметической прогрессии c разностью d, через bi - геометрической, с знаменателем q.

Согласно формуле суммы арифметической прогрессии имеем S3 = (2a1 + 2d) · 3 / 2 = 21 или a1 + d = 7.

По условию a1 - 1, a1 + d - 1, a1 + 2d + 2 - три последовательных члена геометрической прогрессии. Используем свойство геометрической прогрессии:

(a1 + d - 1)2 = (a1 + 2d + 2)(a1 - 1).

После замены переменной a1 = 7 - d и открытия скобок получаем квадратное уравнение

d2 + 3d - 18 = 0, т.е. d1 = 3, d2 = -6.

Условию удовлетворяет лишь d1 = 3 (т.к. арифметическая прогрессия возрастающая). В этом случае a1 = 4. Находим b1 = a1 - 1 = 3. b2 = a1 + d - 1 = 6, откуда q = 2.

Наконец, согласно формуле суммы членов геометрической прогрессии получаем:

S8 = [b1(q8 - 1)] / (q - 1) = 765.

Ответ: S8 = 765.


Сумма трех чисел, которые составляют арифметическую прогрессию, равна 2, а сумма квадратов этих же чисел равна 14/9. Найти эти числа.

____________________________________________________________________________

Используя тот факт, что числа составляют арифметическую прогрессию, запишем их как a, a + d, a + 2d.

Согласно условию их сумма равна 2, т.е. 3a + 3d = 2, a = 2/3 - d.

Согласно второму условию a2 + (a + d)2 + (a + 2d)2 = 14/9.

После раскрытия скобок получаем 27a2 + 45d2 + 54ad = 14.

Делаем замену переменной a = 2/3 - d, раскрываем скобки и получаем:

d2 = 1/9.

d = ±1/3.

Теперь легко найти числа, составляющие арифметическую прогрессию. При любом из значений d = ±1/3 числа будут равны 1/3, 2/3, 1.

Ответ: 1/3, 2/3, 1.


Найти четыре числа, составляющие геометрическую прогрессию, в которой третий член больше первого на 9, а второй больше четвертого на 18.

____________________________________________________________________________

Используя тот факт, что числа составляют геометрическую прогрессию, запишем их как b, bq, bq2, bq3.

По условию:

1) bq2 = b + 9.

2) bq = bq3 + 18.

Домножаем первое уравнение на q и складываем со вторым:

9q + 18 = 0.

Откуда q = -2. Из первого уравнения находим b. b = 3.

Теперь легко найдем все числа: 3, -6, 12, -24.

Ответ: 3, -6, 12, -24.


Найти сумму всех трехзначных чисел, которые делятся на 7.

___________________________________________________

Сначала найдем минимальное и максимальное трехзначные числа, которые делятся на 7. Это числа 105 и 994 соотвественно. Запишем a1 = 105, am = 994.

Найдем m, т.е. количество трехзначных чисел, которые делятся на 7. Используем свойство прогрессии и получаем:

994 = 105 + 7(m - 1).

Откуда m = 128.

А теперь воспользуемся формулой суммы m членов арифметической прогрессии S128 = (105 + 994) · 128 / 2 = 70336.

Ответ: 70336.


1...2 3 
2009-2012 © Все права защищены. "Математика - это просто!" - некоммерческий, обучающий сайт. Все права принадлежат их владельцам.
Rambler's Top100 Украинский портАл